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The critical behavior of a random fiber bundle model with mixed uniform distribution of threshold strengths
and global load sharing rule is studied with a special emphasis on the nature of distribution of avalanches for
different parameters of the distribution. The discontinuity in the threshold strength distribution of fibers non-
trivially modifies the critical stress as well as puts a restriction on the allowed values of parameters for which
the recursive dynamics approach holds good. The discontinuity leads to a nonuniversal behavior in the ava-
lanche size distribution for smaller values of avalanche size. We observe that apart from the mean field
behavior for larger avalanches, a new behavior for smaller avalanche size is observed as a critical threshold
distribution is approached. The phenomenological understanding of the above result is provided using the exact
analytical result for the avalanche size distribution. Most interestingly, the prominence of nonuniversal behav-
ior in avalanche size distribution depends on the system parameters.
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I. INTRODUCTION

Breakdown phenomena in nature has captured the atten-
tion of scientists for years �1�. A study of this phenomena
plays a major role for the prediction of failure and design of
materials and structures. One of the paradigmatic model
mimicking the fracture processes is the random fiber bundle
model �RFBM� which is simple yet subtle enough to capture
the essential physics of the breakdown phenomena.

Random fiber bundle models �2–5� have been studied ex-
tensively in recent years. Typically a RFBM consists of N
parallel fibers with randomly distributed threshold strength
��th� taken from a given distribution. If the stress generated
due to an external force is greater than �th of a fiber, it
breaks. The dynamics of the model is initiated by applying a
small external force just enough to break the weakest fiber
present in the bundle. The load carried by this broken fiber is
shared amongst the remaining intact fibers following a load
sharing rule causing further failures. When no further failure
takes place, the external force is once again increased quasi-
statically to break the weakest intact element present in the
bundle and the process continues until the bundle breaks
down completely at an external stress called the critical
stress. Even though the threshold distribution of real materi-
als may not be known exactly, in theoretical models the dis-
tributions are usually approximated by either a uniform dis-
tribution or a Weibull distribution �3�.

The avalanche size is defined as the number of broken
fibers between two successive loadings. The distribution of
avalanche size turns out to be a key factor in charaterizing
any breakdown phenomena. Hemmer and Hansen �6� studied
the avalanche size distribution D��� of an avalanche of size
� in a RFBM with the global load sharing �GLS� scheme, in
which the additional stress due to a broken fiber is distrib-
uted equally to the remaining intact fibers. They established a

universal power-law distribution in the large � limit given as
D�����−� with �=5/2.

RFBM with threshold strengths which are continuous and
are uniformly distributed between 0 to �1 and also between
�2 to 1 �3,4�, have been studied separately. But what happens
when two such bundles are merged is not known, especially
when �1��2 such that there exists a discontinuity in the
threshold strength distribution. In this paper, we investigate
the role of such a discontinuity on the critical behavior of a
RFBM. The distribution of threshold strength of fibers used
in the present work is given as �see Fig. 1�

���th� =
1

1 − ��2 − �1�
, 0 � �th � �1,

=0, �1 � �th � �2,

=
1

1 − ��2 − �1�
, �2 � �th � 1. �1�

The discontinuity as defined above introduces dilution in the
model in the sense that two types of fibers separated by a gap
in their threshold distributions coexist in the same bundle. It
is shown below that this discontinuity plays a crucial role in
the dynamics of the model. Here, a fraction f of fibers belong
to the weaker threshold distribution with strengths uniformly
lying between 0 and �1 �Class A� whereas the remaining
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fraction of fibers have stronger threshold strengths between
�2 and 1 �Class B�. Clearly, ��2−�1� is the measure of the
discontinuity which vanishes in the limit of purely uniform
distribution �4�.

In a recent paper, Pradhan, Hansen, and Hemmer �7�
showed that for a bundle which is close to the complete
break down �i.e., imminent failure�, a crossover in � from a
value 5/2 to 3/2 is observed when the threshold distribution
approaches the critical distribution. Critical distribution in
their case is the distribution in which the lowest threshold of
the remaining intact fibers is equal to one-half that of the
strongest. This crossover has also been observed with other
load sharing rules �8�. We are however interested in looking
at the distribution of total avalanche size and a crossover
from a power-law behavior with �=5/2 to a non-mean-field,
nonuniversal behavior for smaller � is observed near a criti-
cal distribution. This interesting behavior is due to the pres-
ence of class A fibers. In the present model, the critical dis-
tribution corresponds to �2=0.5. We emphasize that in Ref.
�7�, the proximity of x0 �the threshold of the weakest intact
fiber� to the the critical threshold �=0.5� leads to the cross-
over behavior whereas in the present case it is the proximity
of �2 to the critical value �0.5� which is at the root of the
observed crossover behavior. In a sense, �2 is playing a role
analogous to x0 in our model.

The paper is organized as follows: We have already intro-
duced the model above. The critical stress and exponents are
obtained in Sec. II A with a special emphasis on the ava-
lanche size distribution in Sec. II B. The concluding remarks
are presented in Sec. III.

II. RESULTS AND DISCUSSIONS

A. Critical stress and exponents

To study the dynamics of failure of fibers, we use the
recursive dynamics approach �4�. If a fraction f of the total
fibers belong to Class A and the remaining 1− f to class B,
then the uniformity of the distribution demands

f =
1

1 − ��2 − �1��0

�1

d� ,

so that

�1 =
f

1 − f
�1 − �2� . �2�

The above equation provides a relationship between f , �1,
and �2 and at the same time puts a restriction on the allowed
values of the parameter �1 as shown below. Any value of
�1	 f leads to a value of �2 smaller than �1 which is not an
acceptable distribution �see Eq. �1��.

We now define Ut as the fraction of unbroken fibers after
a time step t. Then the redistributed stress at the instant t is
�t=F /Nt=� /Ut where the applied force F=N� and
Nt=NUt. The recurrence relations between Ut ,Ut+1 and be-
tween �t ,�t+1 for the GLS are obtained as �4�

Ut+1 = 1 − P��t� = 1 − P� �

Ut
�

and

�t+1 =
�

Ut+1
=

�

�1 − P��t��
�3�

where P��t� is the fraction of broken fibers with the redis-
tributed stress �t, and is given as

P��t� = �
0

�t

���th�d�th.

This dynamics propagates until no further breaking takes
place. It should be emphasized that the initial load is so small
that the redistributed stress is always less than �2 and there-
fore fibers from class B cannot fail. Thus to initiate the
breaking of class B fibers, the redistributed stress at a
later time t must exceed �2. The fixed point solution for
U �=U*� and ��=�*� at which no further failure takes place
can be obtained using the standard technique of solving the
above recursive relations. By substituting P��t� in Eq. �3� we
get

Ut+1 = 1 − P� �

Ut
�

= 1 − � �1

1 − ��2 − �1�
+

1

1 − ��2 − �1�
� �

Ut
− �2�	 .

At the fixed point,

U* = 1 − � �1

1 − ��2 − �1�
+

1

1 − ��2 − �1�
� �

U* − �2�	
giving the following stable fixed point solutions:

U* =
1

2�1 − ��2 − �1��
�1 +
1 −

�

�c
�

and

�* =
1

2
−

1

2

1 −

�

�c
�4�

with

�c =
1

4�1 − ��2 − �1��
. �5�

If the external applied stress is less than �c, the system
reaches a fixed point. For �	�c, the bundle breaks down
completely as both the U* and �* become imaginary. Equa-
tion �4� suggests that the redistributed stress �* attains the
maximum value �=0.5� at �c. The critical stress of the mixed
model varies with the gap ��2−�1� and reduces to the value
�c=1/4 for the uniform distribution as ��2−�1�→0. In de-
riving Eq. �4�, �t is assumed to be greater than �2 while the
applied stress when plotted against the redistributed stress
shows a discontinuity at �1. Beyond �1, the external force is
increased to break the fiber with threshold strength �2, i.e.,
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the gap in the threshold distribution is also reflected in the
constitutive behavior of the model.

The discontinuity on the other hand imposes some restric-
tions on the parameters for this calculation to be valid. Since
the maximum value of the redistributed stress is equal to 0.5,
�2 must be less than 0.5 so that some fibers from class B also
fail at the critical point. The condition �2�0.5, eventually
restricts the value of critical stress to be less than 0.5 for any
chosen distribution. However, �2=0.5 is a limiting case
when the redistributed stress at the critical point marginally
reaches class B fibers. In short, we must have

�1 � f , �2 � 0.5.

One can define an order parameter O associated with the
transition �4� as shown below,

O = 2�1 − ��2 − �1��U* − 1 = ��c − ��1/2 = ��c − ��
.

The order parameter goes to 0 as �→�c following a power
law ��c−��1/2. Susceptibility can be defined as the increment
in the number of broken fibers for an infinitesimal increase
of load. Therefore,

� =
dm

d�
, where m = N�1 − U*���� .

Hence,

� � ��c − ��−1/2 = ��c − ��−�.

The exponents 
 and � stick to their mean field values �4,5�,
i.e., 
=�=1/2. We conclude that though the discontinuity
alters the critical stress, the critical exponents remain unal-
tered. It is to be noted that the model reduces to the already
obtained results in various limits. For example, if class A
fibers are absent �f =0�, �c=1/4�1−�2� and an elastic to
plastic deformation is observed �4�.

B. Avalanche size distribution

Let us now focus on the avalanche size distribution expo-
nent �. Below is shown some of the allowed distributions
which satisfy the above-mentioned restrictions.

Case f �1 �2 �c

1 0.10 0.08 0.28 0.31

2 0.20 0.19 0.24 0.26

3 0.20 0.15 0.40 0.33

4 0.30 0.25 0.42 0.30

5 0.30 0.29 0.33 0.26

6 0.40 0.35 0.47 0.29

We study the avalanche size distribution numerically by
using the method of breaking of the weakest fiber �6�. In the
simulation, the fibers are arranged in an increasing order of
their threshold strengths. An external force sufficient to break
the weakest fiber is applied and the load due to the breaking
of this fiber gets redistributed among the remaining intact
fibers following the GLS scheme. The number of failed fi-
bers for a fixed external load is recorded until the dynamics

reaches a fixed point. Thereafter, the external load is in-
creased further and the above process is repeated until the
critical stress is reached.

The following interesting observations �Fig. 2� are clearly
highlighted. �i� For the cases 1, 2, and 5 of the table, the
avalanche size exponent is 5 /2. �ii� For the cases 3,4, and 6,
there is an apparent power-law behavior for smaller � with
the exponent which is found to depend on the system param-
eters. In the examples chosen here the exponent happens to
be close to 3. For larger �, however, we retrieve the univer-
sal mean field behavior with �=5/2. Also, �iii� an increase in
the region with ��3 is seen as �2→0.5. These observations
establish the following: �i� there is a nonuniversal behavior
of D��� in the small � limit, �ii� there is a crossover to the
universal behavior in large � limit, and �iii� the crossover
behavior is prominent as �2→0.5.

The above-mentioned results can be explained by extend-
ing the analytical result for the avalanche size distribution
obtained by Hemmer and Hansen �6� to the mixed model.
The general expression for the avalanche size distribution
with GLS is given as

D���
N

=
��−1

�!
�

0

xc

dx��x��1 −
x��x�
Q�x�

�� x��x�
Q�x�

��−1

exp�− �
x��x�
Q�x�

� , �6�

where x is the redistributed stress and Q�x� is the fraction of
unbroken fibers at x. The upper limit of the integration �xc� is
the redistributed stress at the critical point. The right-hand
side of Eq. �6� is broken into two parts, D1��� and D2��� for

FIG. 2. �a� corresponds to case1 of the table where no crossover
is observed. �b� shows a crossover from a nonuniversal behavior to
the universal behavior with �=5/2 as � is increased �case 4�. �c�
shows an increase in region with nonuniversal behavior �case 6�. A
line with slope −5/2 is drawn in each figure for comparison. In �c�
a line with slope −3 is also shown to indicate the apparent power-
law behavior. �d� compares the simulation and numerical integra-
tion data for case 4 which match identically with each other.
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the mixed model with any allowed values of �1 and �2
�where ��x�=�=1/ �1−�2+�1��.

As long as the redistributed stress is restricted to the class
A fibers,

Q�x� =
1 − �2 + �1 − x

1 − �2 + �1
,

we have

D1��� =
��−1

�!

1

1 − �2 + �1
�

0

�1

dx�1 − �2 + �1 − 2x

x
�

� x

1 − �2 + �1 − x
exp�−

x

1 − �2 + �1 − x
�	�

.

�7�

When the redistributed stress belongs to the second block
�class B�, we have

Q�x� =
1 − x

1 − �2 + �1

and

D2��� =
��−1

�!

1

1 − �2 + �1
�

�2

0.5

dx�1 − 2x

x
�

� x

1 − x
exp�−

x

1 − x
�	�

. �8�

A close inspection shows that Eq. �8� corresponds to a
situation where class A fibers are absent and the results
match exactly with Pradhan et al. �7� where a crossover in
the avalanche size exponent from 5/2 to a value 3/2 is ob-
served as �2→0.5. Here, the presence of class A fibers ne-
cessitates the simultaneous study of Eqs. �7� and �8� for the
total avalanche size distribution. For distributions which are
closer to the critical distribution, Eq. �8� yields exponent
�=3/2 for smaller �, but the contribution from Eq. �7� modi-
fies this small � behavior.

The results obtained by numerically integrating Eqs. �7�
and �8� match identically with the numerical simulation re-
sults �Fig. 2�d��. We observe a sharp fall of D1��� �Eq. �7��
which points to the fact that the avalanches of smaller sizes
are contributed mainly by the breaking of class A fibers
�Fig. 3�. The point of intersection of the two integrals yields
�c which is the value of the avalanche size where the cross-
over takes place. The variation of �c for three different cases
are shown in Fig. 3. Incidentally in the examples presented
here, �c increases with �2. If we look at a particular critical
distribution �Fig. 4�, a crossover from an apparent power-law
behavior of D��� with exponent � close to 3 for small � to a
universal behavior with �=3/2 is observed.

We now discuss the numerical integration and simulation
results in the light of Eqs. �7� and �8�. With a change of
variable x→x / �1−�2+�1−x�, we can rewrite Eq. �7� in the
following form:

D1��� =
��−1

�!
�

0

xm 1 − x

x�1 + x�2e�ln x−x��dx , �9�

where xm=�1 / �1−�2�. The argument of the exponential term
has a maximum at x=1 which is outside the range of inte-
gration and hence the saddle point integration method cannot
be applied �9�. Expanding the term 1/ �1+x�2 in a power
series and then using the incomplete gamma function �10�,
we arrive at the following result �see the Appendix�:

FIG. 3. �a�, �b�, and �c� present the numerical integration results
showing an increase in �c �defined in the text� as �2→0.5. The
symbol corresponds to log10D��� /N=log10�D1���+D2����
whereas log10D1��� and log10D2��� are drawn to compare their
relative magnitudes.

FIG. 4. Avalanche size distribution for a particular critical
threshold distribution with f =0.4. Thick line corresponds to a slope
of −3 and dotted line to −3/2. The asymptotic behavior clearly is
D�����−3/2.
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D1��� =
e�1−xm��

�3/2 xm
�

q=0

�

�− 1�q�q + 1�xm
q

 �
k=0

�
�xm��k

�� + q��� + q + 1� ¯ �� + q + k�

− 
k=0

�
xm�xm��k

�� + q + 1��� + q + 2� ¯ �� + q + 1 + k�� .

�10�

The leading behavior of the infinite series �10� is
�−5/2e�1−xm��xm

� which justifies the nonuniversality observed
in numerical simulations in the small � limit. The question
therefore remains why does the nonuniversal behavior be-
come prominent as �2→0.5. The behavior of D2��� �Eq.
�8�� for smaller ����c� is at the root of this. When
�2→0.5, D2��� goes as �−3/2 and hence the contribution
from D1��� wins over to produce a prominent nonuniversal
behavior. The small � behavior of D��� is therefore non-
mean-field and nonuniversal when �2→0.5. On the other
hand, if �2�0.5, xm is relatively smaller and the contribution
from class A fibers decays very fast as � increases and one
observes a mean-field universal behavior almost for the en-
tire range of �. We also observe a non-power-law behavior
for small � when �1 is very small and �2 is close to critical-
ity as is expected from the analytical result. However for a
given �2 ��0.5�, larger xm leads to a nonuniversal behavior
up to larger �. The crossover value �c is thus roughly given
by the value of � for which D2��� crosses over from a �−3/2

behavior to �−5/2 behavior.

III. CONCLUSIONS

In conclusion, we have studied a mixed fiber bundle with
a discontinuous but uniform threshold distribution and GLS.
Discontinuity leads to a functional dependence of the critical
stress on the system parameters �1, �2, and f and also im-
poses restrictions on the allowed values of these parameters.
Although the critical exponents are unchanged, there is a
nontrivial change in the burst avalanche distribution behavior
where discontinuity leads to a nonuniversal, non-mean-field
behavior for small �. We would like to emphasize that non-
universality becomes prominent only when �2→0.5. For
large � limit, the behavior is however universal and mean
field. If f =0 or �2�0.5, the nonuniversal behavior com-
pletely disappears. The nonuniversality in D��� is also seen
for other distributions �9�. The beauty of our model is that
the nonuniversal behavior is tunable with the system param-
eters and there is a crossover from nonuniversality to univer-
sality in the limit of large �. One should also note that the
imminent failure of the bundle �i.e., final stages of the break-
down process� is the same as in Ref. �7� because the effect of
class A fibers essentially vanishes in that limit.
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APPENDIX

In this appendix, we shall indicate how to arrive at Eq.
�10� of the text starting from Eq. �9�. Equation �9� can be
written as

D1��� =
e�

�3/2�
0

xm 1 − x

�1 + x�2x�−1e−�xdx .

Let

f��� = �
0

xm 1 − x

�1 + x�2x�−1e−�xdx

= �
0

xm

�1 − x�x�−1e−�x�
q=0

�

�− 1�q�q + 1�xq�dx

= 
q=0

�

�− 1�q�q + 1��
0

xm

�1 − x�x�+q−1e−�xdx .

The integral can be further written as

�
0

xm

x�+q−1e−�xdx − �
0

xm

x�+qe−�xdx

=
1

��+q�
0

xm�

y�+q−1e−ydy −
1

��+q+1�
0

xm�

y�+qe−ydy .

Using the power series expansion of incomplete gamma
function �10�

=
1

��+q�e−xm�
k=0

�
�xm���+q+k

�� + q��� + q + 1� ¯ �� + q + k��
−

1

��+q+1

 �e−xm�
k=0

�
�xm���+q+1+k

�� + q + 1��� + q + 2� ¯ �� + q + 1 + k�� .

Rearranging terms, we get

f��� = e−xm�xm
�

q=0

�

�− 1�q�q + 1�xm
q

 �
k=0

�
�xm��k

�� + q��� + q + 1� ¯ �� + q + k�

− 
k=0

�
xm�xm��k

�� + q + 1��� + q + 2� ¯ �� + q + 1 + k�� ,

i.e., Eq. �10�.
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